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Abstract

In this paper, we obtain some criteria for determining the asymptotic stability of
the zero solution of nonlinear delay-difference system with multiple delays in
terms of certain matrix inequalities by using a discrete version of the Lyapunov
second method.

1. Introduction

We consider nonlinear delay-difference system with multiple delays
of the form

x(k+1)= Ax(k) + iBix(k —h)+ f(k, x(k), x(k—hy), ..., x(k = h,,)), (1)
=1

where x(k)e QcR",0<h <...<h,,m>1,A and B;,i=0,1,..., m
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are given n x n constant matrices, f(k, x(k), x(k—hy), ..., x (k—-h,,))

1s a given n-vector nonlinear perturbation function satisfying
f(k, 0,0,..,0)=0.

2. Preliminaries

We assume that the n-vector function nonlinear perturbations are

bounded and satisfy the following hypotheses, respectively:
0< fl(rl) fl(r2) <l

Vr, rp € R, and np # 1y, )
n-r

where [; > 0 are constants for i =1, 2, ..., n.
By assumption (2), we know that the functions f;(-) satisfy
|fl(xl)| < Zi|xi|, 1 = 1, 2, ey N (3)

Fact 1. For any positive scalar ¢ and vectors x and y, the following

inequality holds:

xTy + yTx <exlx+ s_lyTy.

Lemma 2.1. The zero solution of difference system is asymptotic
stability, if there exists a positive definite function V(x): R" — R" such

that
3B > 0: AV(x(k)) = V(x(k +1)) - V(x(k)) —[3||x(k)||

along the solution of the system. In the case, the above condition holds for

all x(k) e V5, we say that the zero solution is locally asymptotically

stable.

Lemma 2.2. For any constant symmetric matrix M e RV,
M =MT >0, scalar s € Z* {0}, vector function W : [0, s] > R", we

have

s-1 s—1
Z(wT(z YMuw(i)) > [ =Ow ] {Z:w(zJ
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3. Main Results

In this section, we present the main results of this paper, which
provides a sufficient condition for the asymptotic stability of the zero
solution of (1) in terms of certain matrix inequalities.

Theorem 3.1. The zero solution of the nonlinear delay-difference
system (1) is asymptotically stable, if there exists the symmetric positive
definite matrices P, G;, W;, i =1,2,...,m and L; = diag(l;, ..., l;, ]

>0,i=0,1, ..., m satisfying the following maitrix inequalities:
(0, 0) 0 0 0 0 0 0o - 0
0 1) w2 - WLm) 0 0 0o 0
0 @1) @2 - (@m 0 0 0o - 0
Y=o 0 0 0 (m+1,m+1) 0 0 - o |
0 0 0 0 0 0 (m+2,m+2) 0 - 0
: : : : : : 0 D :
0 0 0 0 0 0 : 0
0 0 0 0 0 0 0 0 (2m 2m)
4)
where
m
0,0)= ATPA-P + Z(hiGi + W)+ eATPPA + 6;ATA + (7" + 3" +1)LoPLy,
=1
m m m m m m
G, j) = ZZBLTPBJ- +(e 82)ZZBiTBj +(e7t + &35! +1)ZZLiPLj
=1 j=1 =1 j=1 =1 j=1

=1
m m m m
(i J) =D > BIPB; + (s +23)> > BIBj, vi#j=1{1,2 .., m
=1 j=1 =1 j=1
m m
@ J) = —ZZhiG], Vi=j={m+1, m+2, ..,2m}, and

f=f(k, x(k), x(k—hy), x(k—hy), ..., x(k = hy,)).
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Proof. Consider the Lyapunov function V(y(k)) = V;(y(k)) + Va(y(k))
+V3(y(k)), where

Vi(y(k) = x" (k)Px(k),

m k
Vay(®) = D D (= kT ()Gx(),

=1 j=h—h;+1

V(i) = Z <7 (Wie(j),
k—h;+1

=1 j=

P, G;,W,, i=1,2, ...,m being symmetric positive definite solutions

of (4) and y(k) = [x(k), x(k = hy), ..., x(k = hy, )].
Then difference of V(y(k)) along trajectory solution of (1) is given by
AV(y(k)) = AVi(y(R)) + AVy(y(k)) + AV3(y(R)), where

AV1 (y(R)) = V1 (x(k + 1)) = V3 (x(k))
= [Ax(k) + > Bix(k - hy) + f1" PlAx(R) + D Bix(k — ;) + f]
i=1 i=1

— x T (k)Px(k)

= xT (kAT PA - PIx(k)

m m
+ ZxT(k)ATPB x(k — h;) + ZxT(k h; )BT PAx(k)
1=1 i=

~.

+ x T (R)ATPf + fT PAx(k)

+> 2T (k- n;)BIPf + fTPBx(k - hy)

s

N
1l
—

ZxT(k hi)BI PBjx(k - h;)+ fT Pf,
j=1

M-

(..
Il
—
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k-1

and

- ixT(k)Wx(k) ixT(k - hi Wx(k - h;),

1=1 i=1
where (3) and Fact 2.1 are utilized in (5), respectively.
Note that

m m
ZxT(k)ATPBix(k —h:)+ ZxT(k — h;)BY PAx(k)
i=1 i=1

m m
< exT (k) AT PPAx(R) + ZZS LT (k - n;)BE Bjx(k - hj),

=1 j=1
T (R)AT Pf + fT PAx(k)

< gxl (R)AT Ax(k) + e7 T PY,

D x" (k)BT Pf+ " fTPBx(k - hy)

i=1 i=1

m m
< 22 xT (k — hy)BY Bix(k — hj) + ¢35 fT Pf,
i=1 j=1

and

fTPf < iixT(k)LiPij(k) + iiﬂ(k - h)LiPLjx(k — h;),

=1 j=1 i=1 j=1

45

®)
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m
ZxT(k — B;)L;PLjx(k - h;),
j=1

xT (R)L;PLjx(k) + e1"

NgE

8{1fTPf < eyt

12

3

m
xT(k - hL)LLPLJ.’XI(k - h]),
J=

.L

~

.L
Ms 1Ms

xT(k)LiPL x(k) + 851

NgE

ex fTPf < &35!

1

I
—
~.
I
—
N
}—A

hence

AV (y(k)) < xT (R ATPA - P + eATPPA + ;AT A + (67! + &3' + 1)LoPLg (k)

m
# 2 3 a (k= h) Bl PBj + (67 +65)BI B; + (e + 63" +1)

Then, we have

m m
AV(y(R) < xT (R ATPA - P + ZhiGi + ZW,. +eATPPA + 6,47 A
=1 i=1

m m
+(e7" +e3" +1)LoPLo (k) + ZZxT(k ~ ;) BT PB;
i=1 j=1
+ (et +89)Bf Bj + (7" + 63" + 1)L;PL; — W; (k- h;)
m k-1
DA )
i=1 j=k-h;
Using Lemma 2.2, we obtain
m k-1 m k-1 r k-1
2, 2 002 Y] ¥ (550)| w0 3 (540
i=1 j=k-h; i=1\j= Jj=k—h;
From the above inequality, it follows that:

m m
V(y(k) < T (R)ATPA-P + ZhiGi + Zm +eATPPA + 6,47 A
=1 i=1
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+ (e7! + &3t + 1)LoPLq (k)
m m
> 3 a (k- )BT PB; + (7' +22)BI'B;
i=1 j=1
+(e1" +e3" +1)LPL; — W, Je(k — h;)
m( kil T =
—Z ™ Z x(j)| (7G;) ™ x(j)
=k L jsk—h;

= TRy, 2T (k= by ), 2T (k= hg), ooy 2T (k= ),

1 k-1 T 1 k-1 r 1 k-1
(5 > D' (5o D« (=
Lick—my i=k—hs, M i—k—hy,
(0, 0) 0 0 0 0 0 0
0 1) 1 2) @, m) 0 0 0
0 @1) 22 -  @m 0 0 0
!£) (m, 1) (m, 2) (m,A m) 0 0 0
1o 0 0 0 (m+1,m+1) 0 0
0 0 0 0 0 0 (m+2,m+2) 0
: : : : : : 0 g
0 0 0 0 0 0 :
0 0 0 0 0 0 0
x(k)
x(k — hl)
X(k — h2)
x(k —h,,)
k-1
x| | 7 x(j)
j=k—h
1 k-1
e x(J)
2 .
Jj=k—hy
k-1
1
{h_ x(])]
m J=k—hp
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= yT (R)yy(k),

where

m
(0,0)= ATPA-P+ Z(hiGi + W)+ cATPPA + 6 AT A + (71 + 65" + 1)Ly PLy,
=1

G, j) = iiBiTPBj + (7! +82)iiBTB +(e7t + ey +1)ZZL .PL;

i=1 j=1 =1 j=1 =1 j=

~
Il
_

m m
@ J) = _ZzhiGj’ Vi=j={m+1, m+2,..., 2m}, and

f=f(k, x(k), x(kE—hy), x(k—hg), ..., x(k = h,,)).
By the condition (4), AV(y(k)) is negative definite, namely, there is a

number B >0 such that AV(y(k)) < —B||y(k)||2, and hence, the

asymptotic stability of the system immediately follows from Lemma 2.1.

This completes the proof. N

Remark 3.1. Theorem 3.1 gives a sufficient condition for the
asymptotic stability of nonlinear delay-difference system (1) via matrix
inequalities. These conditions are described in terms of certain diagonal
matrix inequalities, which can be realized by using the linear matrix
inequality algorithm proposed in [4]. According to F.D. Chen, X.Y. Liao,
H.Y. Zhu, these conditions are described in terms of certain symmetric
matrix inequalities, which can be realized by using the Schur

complement lemma and linear matrix inequality algorithm proposed in

(4].
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5. Conclusions

In this paper, based on a discrete analogue of the Lyapunov second

method, we have established a sufficient condition for the asymptotic

stability of nonlinear delay-difference system with multiple delays in

terms of certain matrix inequalities.
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